
CoVtRec

Topological Surveillance of Recurrent Mutations in SARS-CoV-2

CoVtRec report as of 17 June 2022

Michael Bleher2*, Lukas Hahn2*, Maximilian Neumann1*, Samuel Braun3, Holger Obermaier3, Mehmet
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Abstract

The appearance of new variants of the coronavirus SARS-CoV-2 in the current COVID-19 pandemic
underlines the importance of being able to quickly identify mutations that could confer some adaptive
advantage to the virus, such as immune evasion or higher infectivity. Here we apply CoVtRec, a fast
and scalable early warning system based on Topological Data Analysis, for the identification and
surveillance of emerging potentially adaptive mutations in the ongoing evolution of SARS-CoV-2.
CoVtRec is based on a new topological approach to the surveillance of recurrent mutations in large
genomic datasets developed in [1].
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Results

We analyzed topological signals for the ongoing convergent evolution of the coronavirus SARS-CoV-2
on the Spike gene from 17 May 2021 until 17 June 2022. To that end, we performed a topological
recurrence analysis for a curated alignment of 10,330,433 high-quality SARS-CoV-2 Spike gene se-
quences shared via GISAID, the global data science initiative [2, 3]. For each Spike mutation we
computed its topological recurrence index (tRI) and the corresponding time series analysis chart.
The topological recurrence index is a topological measure for convergence of a given mutation (see
[1, 4] for details).

We present a list featuring the top ten amino acid variations on the Spike gene that show strongest
topological signal of convergence as of 17 June 2022 (see Table 1). Here signals with tRI ≥ 106 are
statistically significant (p < 0.05). It was demonstrated in [1] that these mutations are potentially
adaptive in the current phase of the pandemic and might therefore appear in future variants. We
also present time series analysis charts (see Figure 1) showing (i) the development of the topological
signal as well as its significance over time, (ii) major lineages containing the mutation, and (iii) the
date from which on the topological signal became significant.

SAAV tRI relative significance notable variants

G142D 21083 197.0 Delta, Omicron, Kappa

T95I 7601 71.0 Delta, Omicron, Iota, Kappa, Mu

L5F 5752 53.8 Iota

D950N 4651 43.5 Delta, Mu

R346K 3314 31.0 Omicron, Mu

N440K 2968 27.7 Omicron

A222V 2955 27.6 Delta, Omicron

V1264L 2371 22.2

A701V 1926 18.0 Beta, Iota

S112L 1916 17.9

Table 1. The top ten amino acid changes on the Spike gene showing strongest topological signal of convergence as of
17 June 2022. For a given mutation, the table displays its topological recurrence index (tRI), its relative significance,
and notable variants containing the mutation.
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Figure 1. Time series analysis charts for the mutations listed in Table 1. Each chart shows the topological recurrence
index (red) and its relative significance (green) from 17 May 2021 until 17 June 2022. In each chart, in the upper
diagram the shaded region marks the level of significance.
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Methods

Data acquisition and data preparation

Our analysis is based on the alignment msa 0617.fasta downloaded from the GISAID EpiCoV
Database [2, 3] on 18 June 2022. This alignment comprises 10,330,433 SARS-CoV-2 whole genome
sequences that have been aligned to the reference sequence Wuhan/WIV04 with GISAID accession
number EPI ISL 402124 using MAFFT (Version 7) [5]. Sequences in this alignment were truncated
to the Spike gene (reference site positions 21,563 to 25,384), and subsequently sequences containing
any characters other than A, C, T, G or - were removed. This resulted in an alignment comprising
5,284,891 complete SARS-CoV-2 Spike genes of length 5,862nt. A list of accession numbers of all se-
quences in this alignment, along with an acknowledgement of the contributions of both the submitting
and the originating laboratories, is accessible at https://doi.org/10.55876/gis8.220619ou.

Topological recurrence analysis

The Spike gene alignment contains 331,544 genetically distinct sequences. We used Hammingdist

(Version 0.15.0) [6] to compute the genetic distance matrix of this alignment. Subsequently we
used Ripser [7] to compute the representative cycles for the persistent homology of the Vietoris–
Rips filtration associated to the genetic distance matrix. The computation of persistence barcodes
was restricted to small genetic distance scales (Ripser scale parameter threshold set to 2). Next
a complete list of SNV cycles (topological cycles all of whose edges correspond to single nucleotide
variations) in the given alignment was generated from the corresponding Ripser output. Then we
used custom code implemented in Python to compute the topological recurrence index (tRI) for each
such SNV. Summing over all SNVs determining an SAAV (single amino acid variation), we computed
the tRI for each SAAV. Lastly, from the distribution of the tRI measurements over the whole Spike
gene we inferred the level of significance for the tRI per SAAV. For each SAAV, its relative significance
is then defined as the quotient of its tRI by the level of significance. Using dimensional reduction in
multipersistence via deformations of distance matrices, we computed tRI time series analysis charts
at daily resolution from the natural stratification by time of genomic data. For a more detailed
description of the topological recurrence analysis see [1, 4].

Data availability

All SARS-CoV-2 genome data used in this work are available from the GISAID EpiCov Database [2,
3] at https://www.gisaid.org and are accessible at https://doi.org/10.55876/gis8.220619ou.

Code availability

Code used for the analyses is available at https://github.com/ssciwr/hammingdist and https:

//github.com/Ripser/ripser/tree/tight-representative-cycles. All other code is available
from the corresponding authors upon request.
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